Privacy Preserving Machine Learning

Multi-party computation protocols provide computational security to both data and model through encrypted computations. Differential privacy, on the other hand, provides information theoretic privacy by perturbing the computations with noise. These techniques consider a different threat model and have orthogonal goals. In this project, we combine both technuqies to achieve strong security and privacy for machine learning on sensitive data.

Bargav Jayaraman
PhD in Computer Science

My research interests include machine learning and privacy.


We propose differentially private algorithm for non-convex empirical risk minimization with reduced gradient complexity.

We combine differential privacy and MPC for privacy preserving distributed learing of strongly-convex ERM algorithms.