

Distributed Learning Without Distress: Privacy-Preserving Empirical Risk Minimization

¹ Department of Computer Science, University of Virginia, Charlottesville, Virginia USA ² Department of Computer Science, UCLA, Los Angeles, California USA

Accepted at NeurIPS 2018, Montreal Canada

Bargav Jayaraman¹, Lingxiao Wang², David Evans¹ and Quanquan Gu²

Background on Empirical Risk Minimization

Given the following convex objective function:

Find O that minimizes the objective function:

 $\hat{\theta} = argmin J(\theta)$

 $\mathcal{T}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\theta, X_i, Y_i) + \lambda N(\theta)$

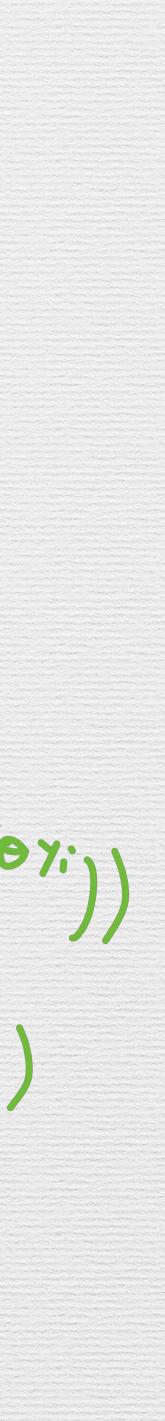
Background on Empirical Risk Minimization

Given the following convex objective function:

 $\hat{\Theta} = argmin J(\Theta)$

 $\mathcal{T}(\Theta) = \frac{1}{n} \sum_{i=1}^{n} l(\Theta, X_i, Y_i) + \lambda N(\Theta)$ $\mathcal{T}(\Theta) = \frac{1}{n} \sum_{i=1}^{n} l(\Theta, X_i, Y_i) + \lambda N(\Theta)$

Find Θ that minimizes the objective function: $(log(1+e^{-x_i \cdot \Theta y_i}))$ $\hat{\Theta} = argmin J(\Theta)$ $\left(\frac{1}{2}\left(X^{T}\theta - Y^{T}\right)^{2}\right)$

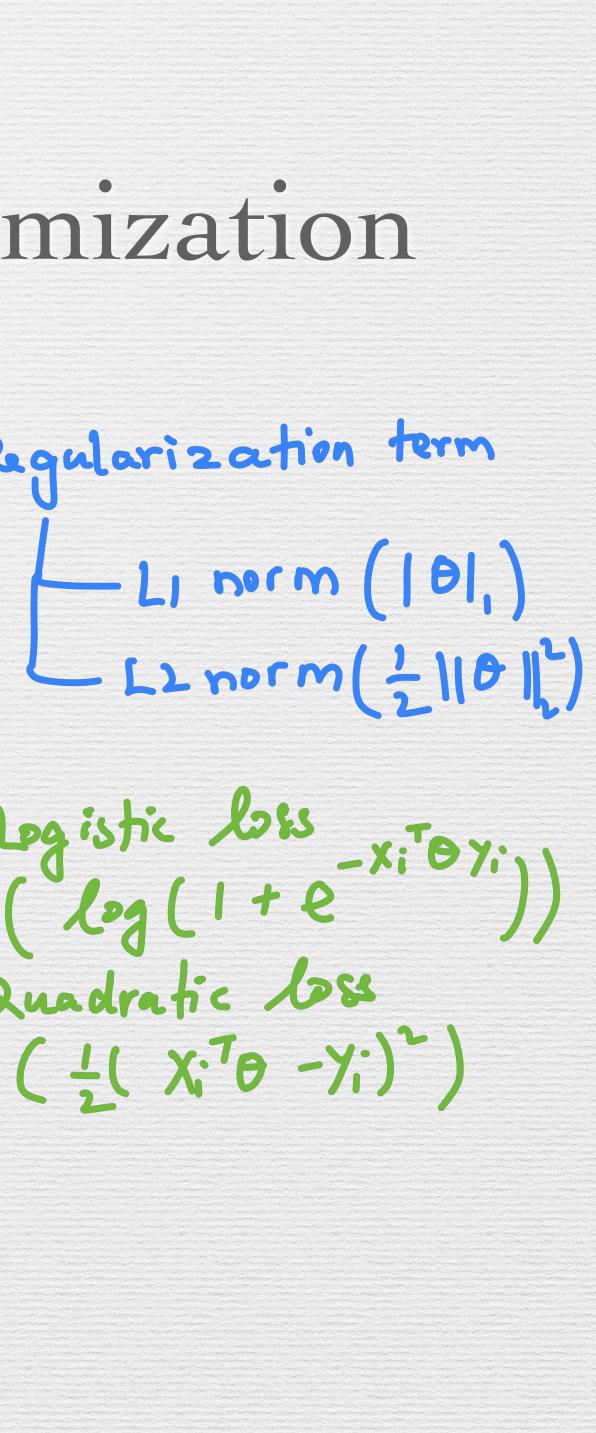


Background on Empirical Risk Minimization

Given the following convex objective function:

Find O that minimizes the objective function:

Logistic Loss -X: 07: (Log(1+e))) Quadratic Loss $\hat{\Theta} = argmin J(\Theta)$



A randomized mechanism M is (ϵ, δ) -DP if for two neighbouring datasets D and D' $\frac{\Pr[M(0) \in S]}{\Pr[M(0') \in S]} \leq e^{\epsilon} + \delta$

A randomized mechanism Mis (e,). DP if for two neighbouring datasets D and D' $\frac{\Pr[M(0) \in S]}{\Pr[M(0') \in S]} \leq e^{\epsilon} + \delta$

Given that sensitivity of M is:

 $\Delta M = \max_{0,0'} \| M(0) - M(0') \|$

We can ensure ϵ -DP if we sample Laplace noise:

Lap(b), where $b = \frac{\Delta M}{G}$

A randomized mechanism M is (ϵ, δ) -DP if for two neighbouring datasets D and D' $\frac{\Pr[M(D) \in S]}{\Pr[M(D') \in S]} \leq e^{\epsilon} + \delta$

Given that sensitivity of M is:

 $\Delta M = \max_{D, D'} \| M(D) - M(D') \|$

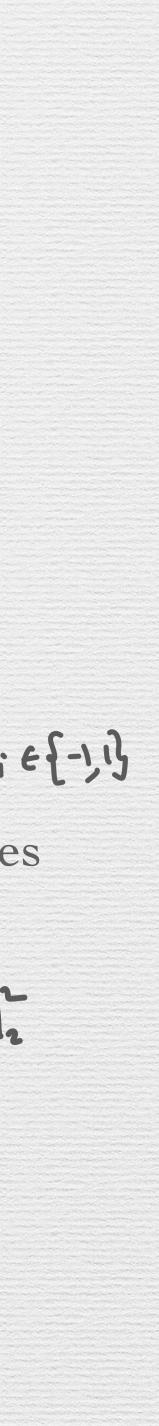
We can ensure ϵ -DP if we sample Laplace noise:

Lap(b), where $b = \Delta M$

Example: Logistic Regression

If D = (X, Y) such that $|| X || \leq 1$ and $Y \in \{-1, 1\}$

If Logistic Regression model M minimizes the following objective function:



A randomized mechanism Mis (ϵ, δ) -DP if for two neighbouring datasets D and D' $\frac{\Pr[\Pr(0) \epsilon s]}{\Pr[\Pr(0') \epsilon s]} \leq e^{\epsilon} + \delta$

Given that sensitivity of M is:

 $\Delta M = \max_{0,0'} || M(0) - M(0') ||$

We can ensure ϵ -DP if we sample Laplace noise:

Lap(b), where $b = \frac{\Delta M}{E}$

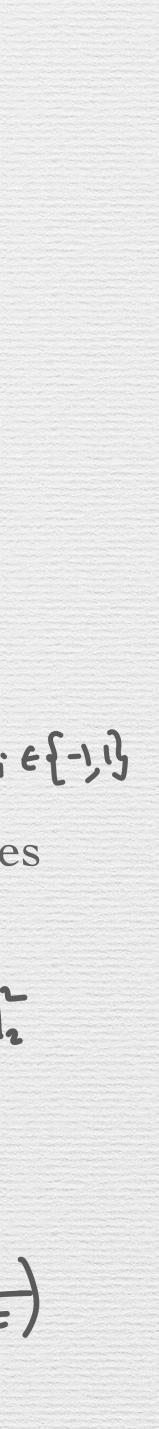
Example: Logistic Regression

If D = (X, Y) such that $|| X_i || \leq 1$ and $Y_i \in \{-1, j\}$

If Logistic Regression model M minimizes the following objective function:

$$J(0) = \frac{1}{n} \frac{2}{2n} \log(1 + e^{-x_{i}^{2}}) + \frac{1}{2} + \frac{1}{2$$

 \therefore Mis E - DP if $\Theta \leftarrow \Theta^* + Lap(\frac{2}{n\lambda E})$



Background on Multi-Party Computation

Input of P1 is not revealed to P2

X

Secure Computation

f(X, X)

XL

P2

Input of P2 is not

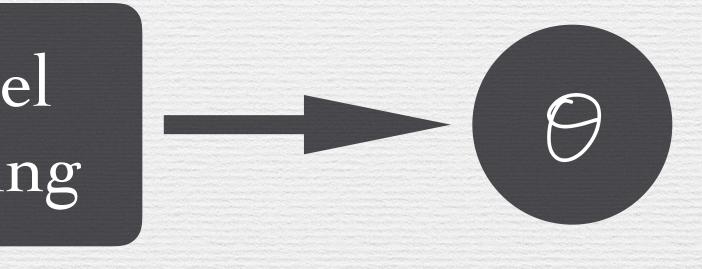
revealed to P1

D = (X, Y)

n

Model Training

 $J(\Phi) = \frac{1}{n} \sum_{i=1}^{n} f_{i}$ for t in T $\Theta \leftarrow \Theta$ return Θ



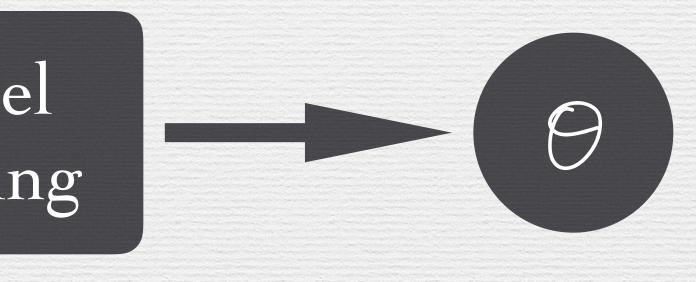
$$\mathcal{L}(\Theta, X_{i}, Y_{i}) + \lambda N(\Theta)$$

$$: - \eta \nabla J(\Theta)$$

D = (X, Y)

Model Training

for t in T: $\Theta \leftarrow \Theta - \eta \nabla J(\theta)$ return O

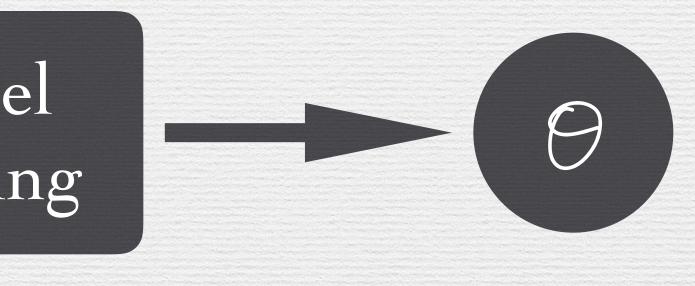


 $J(Q) = \frac{1}{n} \sum_{i=1}^{n} l(Q, X_i, Y_i) + \lambda N(Q) + \beta \{ \alpha \in \frac{1}{n} \}$ Chaudhuri et al. (2011) **Objective Perturbation**

D = (X, Y)

Model Training

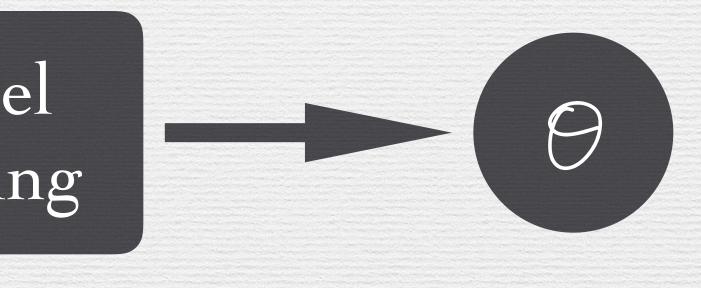
 $T(\Phi) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\Phi, X_{i}, Y) + \lambda N(\Phi) + \beta \{\Phi, h\}$ Chaudhuri et al. (2011) Objective Perturbation $for \ t \ in \ T:$ $\Theta \leftarrow \Theta - \eta \nabla J(\Phi)$ $return \Theta + \beta \{\Phi, h\}$ Chaudhuri et al. (2011) Output Perturbation



D = (X, Y)

Model Training

 $T(Q) = \frac{1}{n} \sum_{i=1}^{n} L(Q, X_i, Y_i) + \lambda N(Q) + \beta \{ \alpha \in \frac{1}{n} \}$ for t in T: $\Theta \leftarrow \Theta - \eta (\nabla J(\theta) + \beta \{\alpha, \frac{1}{2}\})$ return $O + \beta \{ c \}$ Chaudhuri et al. (2011) Output Perturbation



Chaudhuri et al. (2011) **Objective** Perturbation

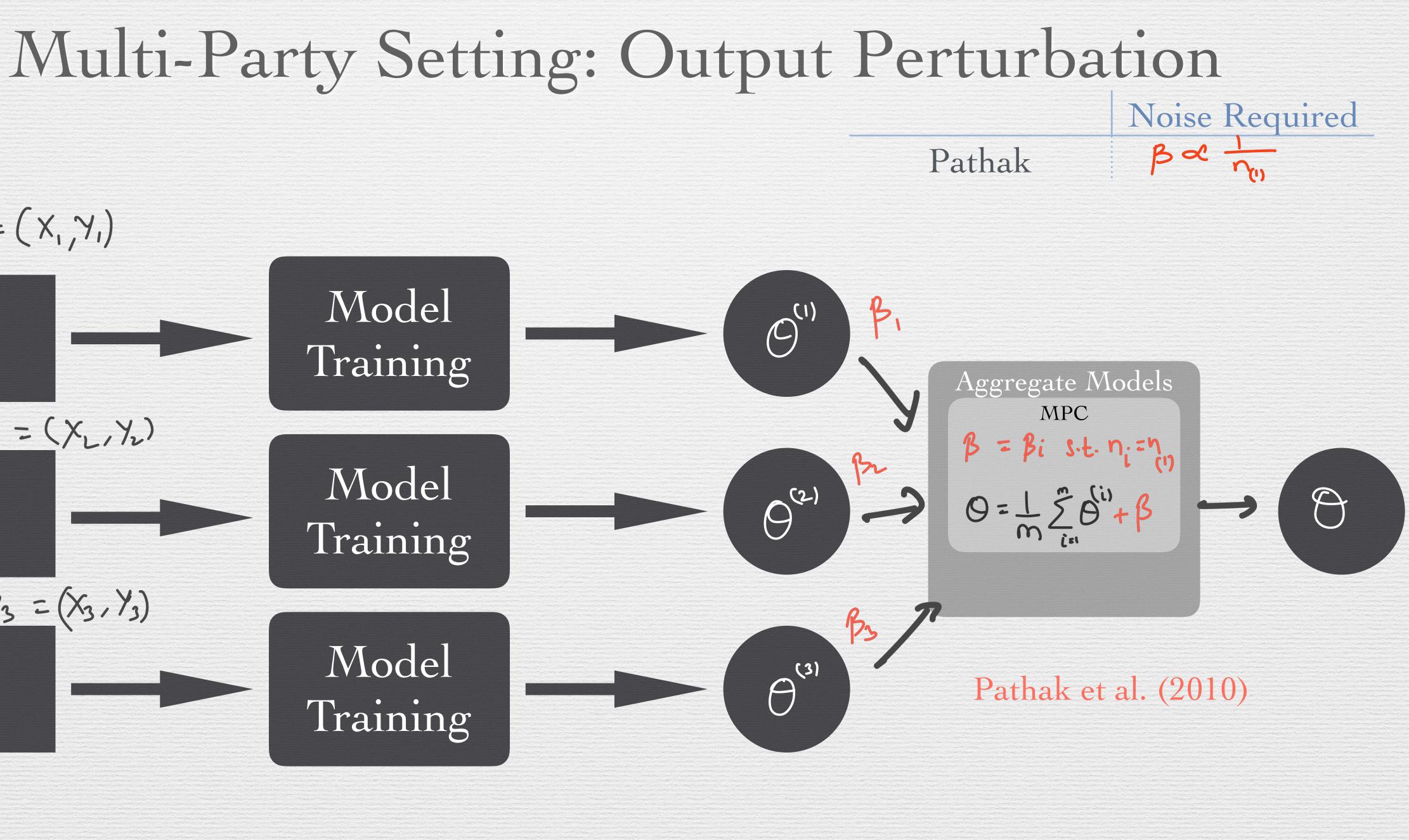
> Abadi et al. (2016) Gradient Perturbation

Multi-Party Setting: Output Perturbation

 $D_1 = (X_1, Y_1)$ $D_{2} = (X_{L}, Y_{L})$ <u>م</u>- $D_3 = (X_3, Y_3)$

n

 $D_{1} = (X_{1}, Y_{1})$ Model Training n $D_{2} = (X_{L}, Y_{2})$ Model <u>م</u>-Training $D_3 = (X_3, Y_3)$ Model Training



Multi-Party Setting: Output Perturbation 2

 $D_{1} = (X_{1}, Y_{1})$ Model Training $D_{2} = (X_{L}, Y_{L})$ Model Training $D_3 = (X_3, Y_3)$ Model Training

n

Pathak Chaudhuri

P

9⁽²⁾

わら

 Θ

(3)

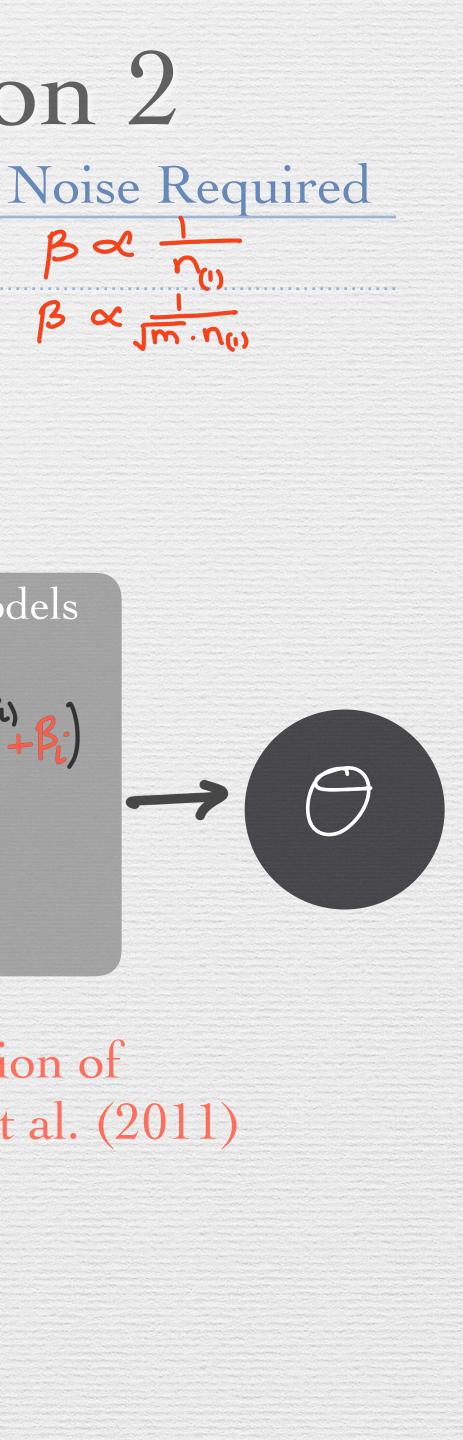
Aggregate Models

Ba

 $\beta \propto \frac{1}{\sqrt{m \cdot n_{(1)}}}$

 $O = \frac{1}{m} \sum_{i=1}^{m} \left(O^{(i)} + \beta_i \right)$

Extension of Chaudhuri et al. (2011)



Improved Output Perturbation

 $D_{1} = (X_{1}, Y_{1})$ Model Training n $D_{2} = (\chi_{L}, \chi_{2})$ Model **١**... Training $D_3 = (X_3, Y_3)$ Model Training

Pathak Chaudhuri Our Method

Aggregate Models

Bac -

 $\beta \propto \frac{1}{\sqrt{m} \cdot n_{(1)}}$

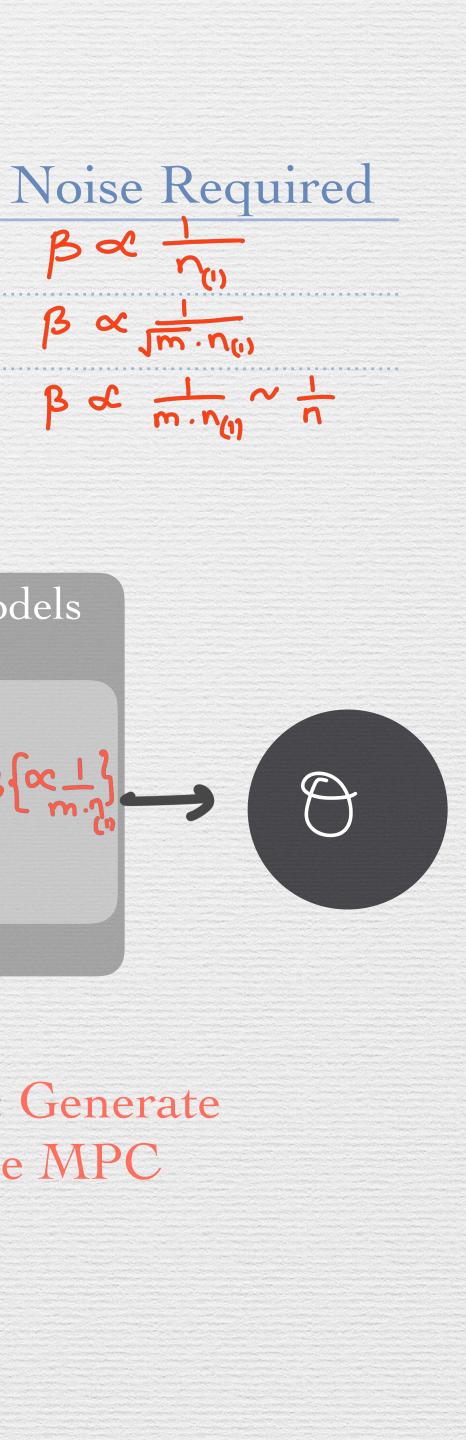
MPC $\Rightarrow \Theta = \frac{1}{m} \sum_{i=1}^{m} \Theta + \beta \left[\frac{\alpha_{i}}{m} \right]$

(3) (3)

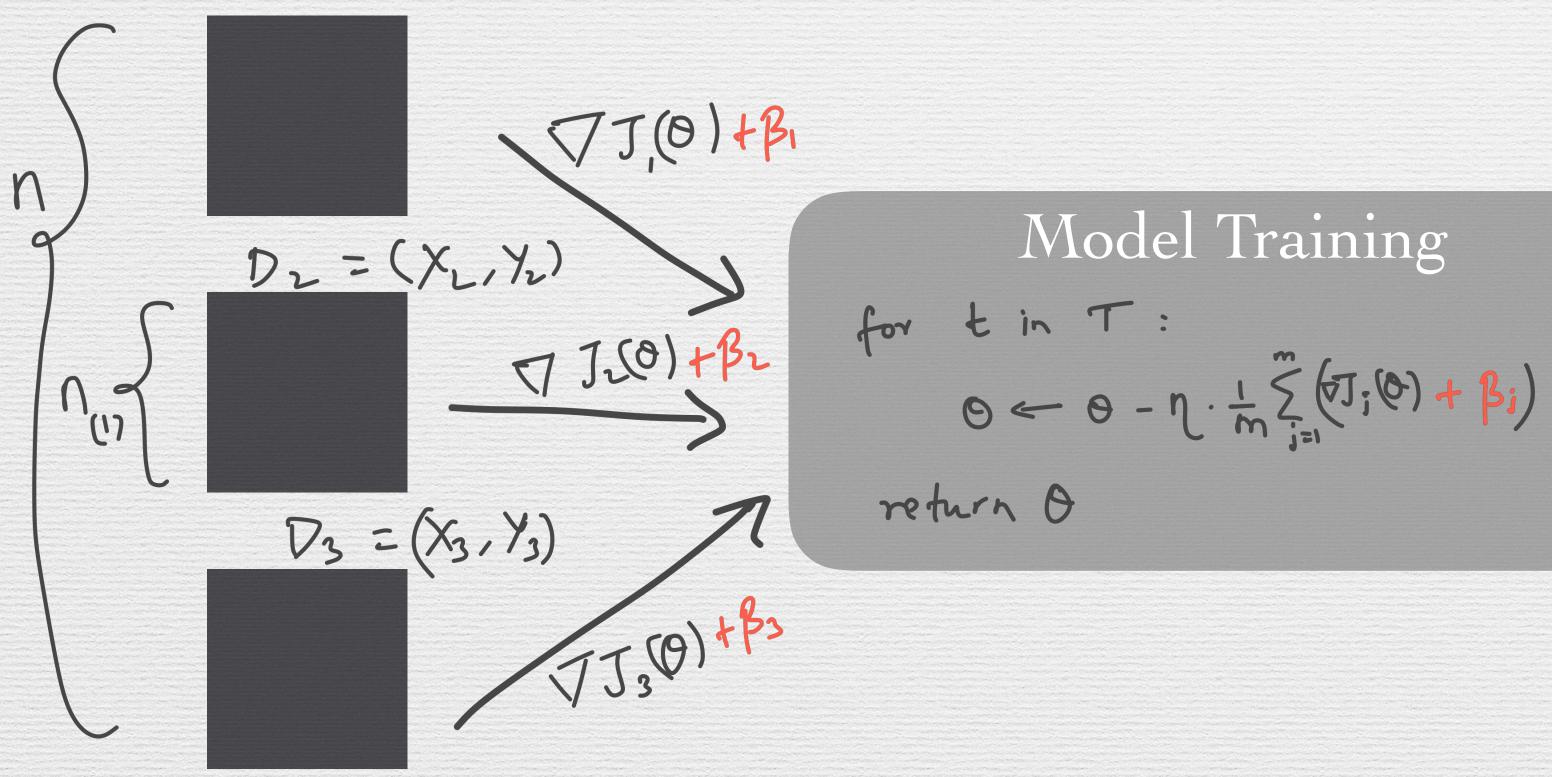
9⁽²⁾

9(1)

Our Method: Generate noise inside MPC



 $D_{1} = (X_{1}, Y_{1})$



Multi-Party Setting: Gradient Perturbation

Noise Required

 $\beta \propto \frac{1}{\sqrt{m} \cdot n(0)}$

Shokri & Shmatikov

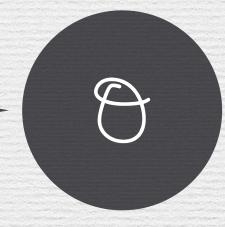
Model Training

Shokri and Shmatikov (2015)

Improved Gradient Perturbation

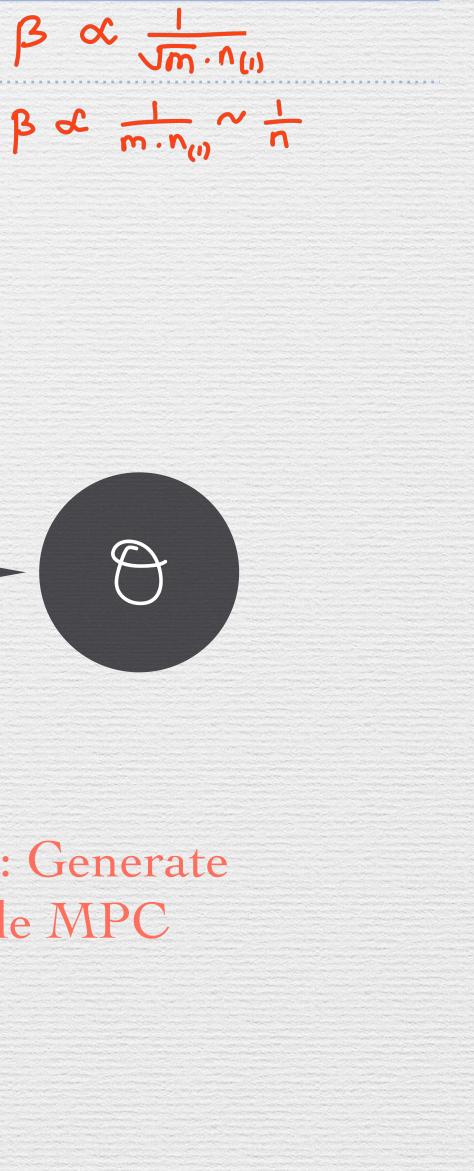
 $D_{1} = (X, Y_{1})$ VJ(0) n $D_{2} = (X_{L}, Y_{L})$ Model Training for t in T: $\Theta \leftarrow \Theta - \eta \cdot (\frac{1}{m} \sum_{j=1}^{m} I_j (\Theta) + \beta \left[\cos \frac{1}{m} \sum_{j=1}^$ V J.(0) $D_3 = (X_3, Y_3)$ return O VJ2(9)

Shokri & Shmatikov Our Method

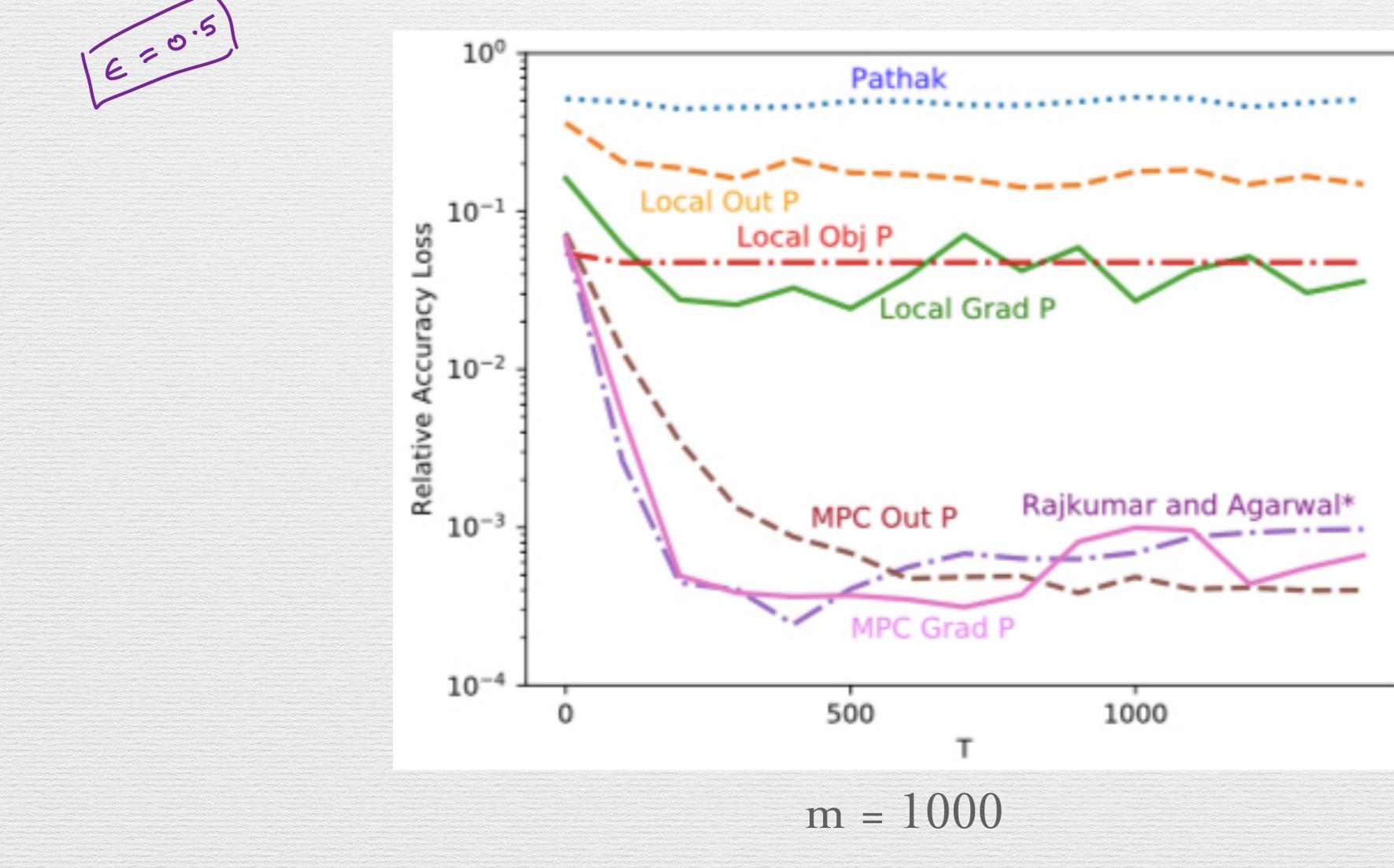


 $\beta \propto \frac{1}{\sqrt{m} \cdot n(u)}$

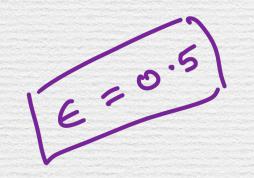
Our Method: Generate noise inside MPC

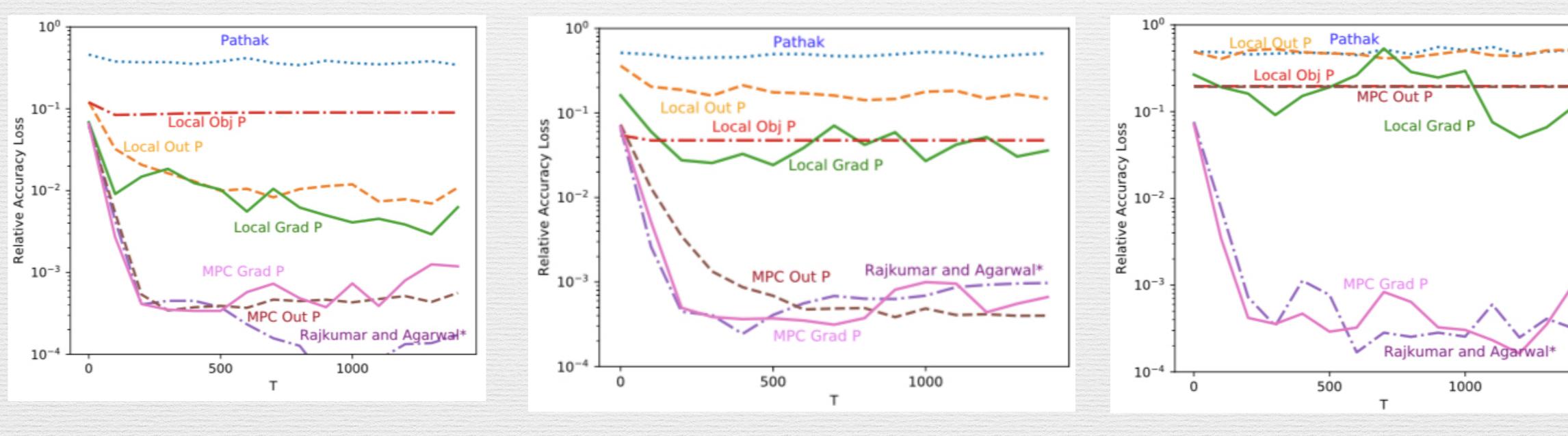


KDDCup99 Dataset - Classification Task



*Violates the privacy budget





m = 100

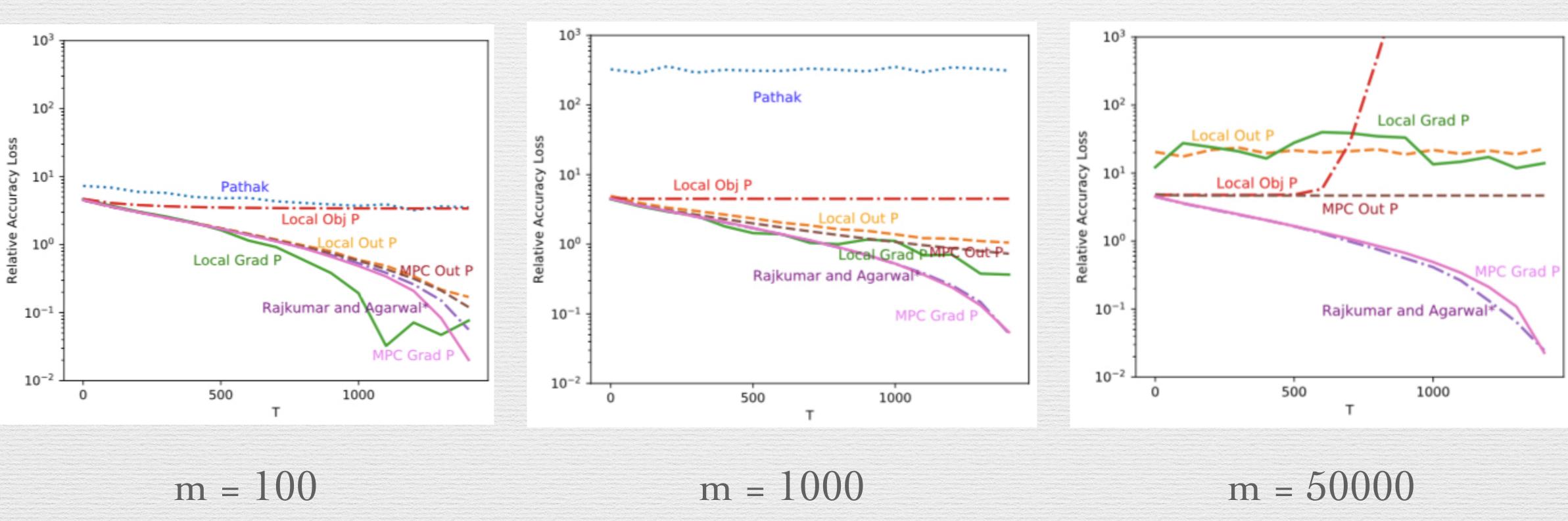
*Violates the privacy budget

KDDCup99 Dataset - Classification Task

m = 1000

m = 50000





*Violates the privacy budget

KDDCup98 Dataset - Regression Task

Key Conclusion

Shown via two instantiations of Differential Privacy: 1. Output Perturbation 2. Gradient Perturbation

Generating noise inside MPC and adding it after secure aggregation allows reducing the required noise in multi-party setting.

Source Code

https://github.com/bargavj/distributedMachineLearning

References

- In ACM SIGSAC Conference on Computer and Communications Security, 2016.
- Research, 2011.
- Information Processing Systems, 2010.
- and Statistics, 2012.

• Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar and Li Zhang. Deep learning with differential privacy.

• Kamalika Chaudhuri, Claire Monteleoni and Anand D. Sarwate. Differentially private empirical risk minimization. In Journal of Machine Learning

• Manas Pathak, Shantanu Rane and Bhiksha Raj. Multiparty Differential Privacy via Aggregation of Locally Trained Classifiers. In Advances in Neural

• Arun Rajkumar and Shivani Agarwal. A differentially private stochastic gradient descent algorithm for multiparty classification. In Artificial Intelligence

• Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In ACM Conference on Computer and Communications Security, 2015.

