
Thesis Presentation

Bargav Jayaraman

201207509

MS By Research in CSE

CSTAR Lab

Guide: Dr. Bruhadeshwar Bezawada

Privacy Preserving

String Pattern Matching

On Outsourced Data

Bargav Jayaraman 1

Presentation Outline

 Domain Background

 Motivation to Privacy Preserving String Pattern Matching

 System Model and Problem Statement

 Our Approach for Privacy Preserving String Pattern

Matching

 Search Optimized Privacy Preserving String Pattern

Matching

 Ranking of Search Results

 Experimental Results on Real-world Data sets

Bargav Jayaraman 2

Domain Background
 Cloud storage is pervasive and popular

 Dropbox; Google Drive ;Microsoft OneDrive ;
 Apple iCloud; Amazon Simple Storage Service

 Storage format : documents indexed with keyword strings
 Servers protect files by encrypting them at server-end

 How are documents of interest retrieved?
 User sends a query string to cloud server
 Server decrypts each document and matches the query string against each

keyword in the document

 Major Drawback : Data is not private from the server!
 The query strings reveal a lot of information about the user
 Server learns the personal profiles of users and uses them for commercial

gains like advertising, spam and so on
 Corrupt employees can steal users’ confidential data

 Bargav Jayaraman 3

Domain Background

 Solution : Data owner encrypts the files and authorizes (if

any) users to search on them

 Data owner builds an encrypted index, which supports

encrypted queries

Bargav Jayaraman 4

Motivating Privacy Preserving String

Pattern Matching
 String pattern matching problem is about checking if a query string occurs within a

keyword

 String pattern matching enhances user search capability significantly by providing
advanced search options (Google™ search engine Advanced search options)

 “terms beginning with these words” : When user only knows part of the matching
keywords
 Sample query: Find mobile numbers starting with string “9940”

 Sample results: 99405040, 99405045, ….

 “terms containing the words” : When query string is a sub-string of a
keyword
 Sample query: Find all genes with disease pattern “101”

 Sample results: 11100101001, 100100101100100011

 Bargav Jayaraman 5

Problem Statement
 System Input (to cloud server):

 Encrypted document set : D = { Enc(D1) ,…, Enc(Dn) } , where Enc is a
symmetric key encryption algorithm

 Note, each document has keywords : D(W) = {w1, w2,…, wm}
 Encrypted index I, which is built over D(W)
 An encrypted query string Enc(Tp), from data user

 Output:
 List of documents: Lr ={ D1,…, Dk}, where string Tp is a sub-string of

some keyword w in Di(w) for each document in Lr

 Example query string: “late”

 Desired output : all documents containing keywords like: later, ablate,
contemplate, plates, elated … etc.

Bargav Jayaraman 6

Adversary Model

Bargav Jayaraman 7

 We adopt the Honest-but-Curious (HbC) adversary model

for the cloud server and any passive adversaries

 The cloud server is:

 honest in adhering to the communication protocols and the

query processing algorithms

 curious to learn additional information about the user by

observing the data processed in the search protocol

Security Model
 We aim to achieve “IND-CKA”, indistinguishability (or) semantic security

against adaptive chosen keyword attack on symmetric key encryption
algorithms

 In this model: given two document sets D0, D1, the owner builds an
encrypted index : Ind_b
 If b=0, Ind_b is index for D0

 If b=1, Ind_b is index for D1

 After some chosen keyword queries to Ind_b adversary is challenged to
output the value of : b

 This model does not hide number of keywords, documents accessed or
the encrypted queries

Bargav Jayaraman 8

Limitations of Prior Research
 Public-key based (PKE) approaches, reduce the problem to

polynomial evaluation : the encrypted query string is one
input and the cipher-text is the other input

 These methods require multiple rounds of protocol interaction and is
computationally expensive, making it impractical in the cloud server
domain

 Some PKE methods are:

 Baron et al.’s 5PM for DNA matching

 Katz et al.’s Text processing protocol for DNA matching

 Hazay et al.’s Pattern matching in presence of malicious adversaries

 Troncoso et al.’s and Mohassel et al.’s DNA matching through DFA
evaluation

Bargav Jayaraman 9

Limitations of Prior Research

Bargav Jayaraman 10

 Symmetric-key based (SSE) approaches focused on :
 Exact keyword matching, which is a sub-set of the problem we are

addressing

 Fuzzy keyword matching using hamming distance errors, which is a
variation of the keyword matching problem and tries to correct
human errors in entering query keywords

 Some SSE methods are:
 Goh’s Bloom Filter Index

 Curtmola et al.’s Inverted Index

 Cao et al.’s Multi-keyword search protocol

 Wang et al.’s Fuzzy keyword search protocol

 Vappas et al.’s Blind Seer

 Seny et al.’s KRB tree

Key Contributions
 First approach to support string pattern search in outsourced

data under the symmetric encryption model

 Our index structure: Pattern Aware Secure Search Tree –
PASStree, implements privacy preserving string pattern matching
under the strong IND-CKA security model

 We describe an efficient ranking algorithm, to return the results in
a best ranked manner

 Our prototype implementation works over a million key words
with search time of few milliseconds

Bargav Jayaraman 11

Our Approach
 Basic intuition : If a query pattern matches a keyword, then it

implies that the query pattern must be a sub-string of the keyword

 We extract every possible sub-string of a keyword, encrypt and
store the sub-strings inside a Bloom filter

 The index is the set of Bloom filters, one per keyword

 The problem is reduced to that of exact matching

 To search, the user generates an encrypted query, called trapdoor

 If trapdoor is found inside any Bloom filter, then the keyword is
returned as match

Bargav Jayaraman 12

Our Approach : Bloom Filter Storage

 To store keyword: “Ship”, extract all possible sub-strings:

• “Ship”, “hip”, “ip”, “p”, “Shi”, “Sh”, “hi”, “h”, “i”

 A Bloom filter is a bit-array of size M, and has K hash functions which map into the
range [0, M-1]

 To store a string in this array: we hash the string with each hash function and set the
hash locations to 1

 Using encryption algorithm E we encrypt the sub-string before storage

 Each Bloom filter has a unique ID to provide randomness

0 0 1 0 0 1 0 0 1 0

s

H1(E(s), BFID) H2(E(s), BFID) H3(E(s), BFID)

Bargav Jayaraman 13

Our Approach : Query Search

 To search a query string ‘s’ in a Bloom filter ID with BFID the user
generates trapdoor: E(s)

 The cloud server hashes the trapdoor for each Bloom filter and reports
a match if all positions are set to 1

String Found!

0 0 1 0 0 1 0 0 1 0

E(s)

H1(E(s), BFID) H2(E(s), BFID) H3(E(s), BFID)

Bargav Jayaraman 14

Preventing Attacks on Bloom Filters
 Since Bloom filters are stored on cloud server, the adversary can

try to learn about the contents in several ways

 First, the common bit locations can be used to infer common
keywords across Bloom filters
 We prevent this by using a random Bloom filter ID and ensuring that

the same keyword is hashed into different locations

 Second, the number of bits in the Bloom filter can leak the
number of strings stored
 To prevent this, we add additional padding bits to each Bloom filter

such that two Bloom filters with different number of keywords have
nearly same number of 1s.

Bargav Jayaraman 15

Technical Challenges in Basic

Approach

 First Challenge : Each document may have several keywords

 Matching each keyword in the basic approach is inefficient

 Our solution : We build a binary tree like structure to perform

efficient searching

 Second Challenge : A query string can appear at different

positions in a keyword

 The results need to be returned in a ranked order

 Our solution : We record the matching positions along the length of

the tree and rank the leaf nodes

Bargav Jayaraman 16

Improving Search Efficiency with

PASSTree
 PASStree arranges the keywords using Bloom filters arranged as

nodes of a binary tree structure
 The root node stores all the sub-strings of all the keywords in the

document collection
 The two children of the root node correspond to two equal sized sub-

sets of the keyword collection in the parent node
 Each child node stores the sub-strings of the keywords of the

keyword set associated with it
 Each leaf node contains a single keyword

 Each leaf node points to the ranked list of documents for the
keyword

 The search proceeds along left and right sub-trees and returns all
matching leaf nodes

Bargav Jayaraman 17

PASSTree Illustration

Bargav Jayaraman 18

Problems with PASStree

 If a query is matched with two sub-trees, the search proceeds

along both sub-trees

 Likely that the search can span the entire tree

Bargav Jayaraman 19

Problems with PASStree

 It is desirable to split the keywords set into two equal sized

sub-sets Sa, Sb such that any two keywords across Sa and Sb

don’t share too many sub-strings

Bargav Jayaraman 20

Sa Sb

PASStree+
 We cluster the keywords based on pre-defined similarity

metrics

 We define following metrics of similarity

 If two keywords share many sub-strings;

 If two keywords appear as a phrase in same document;

 If two keywords appear in the same document;

 We use Clustering LARge Applications (CLARA) clustering
algorithm which is based on the standard k-medoids clustering
algorithm

 Our experiments show that this approach improves search
efficiency significantly

Bargav Jayaraman 21

Ranking Search Results

 Simple heuristic: the position of the first occurrence of the

pattern in the keyword determines the rank of the keyword

with respect to the pattern

 E.g., for a query string “Ship” : the set of matching keywords

“Shipment”, “Shipper”, “Worship”, will be ranked 1, 1 and 2

 We record the matching positions for a given pattern using

an auxiliary Bloom filter called sub-string prefix (SP) Bloom

filter

 Each node in the PASStree+ gets one such SP filter

Bargav Jayaraman 22

Ranking Search Results

 At a leaf node, the SP Bloom filter stores all the prefixes of

the keyword

 At the next higher node, the SP Bloom filter stores all sub-

strings of the keyword in the 2nd position and so on

 For example, for keyword “Shipment”:

 Leaf node’s SP stores : “Shipment”, “Shipmen” , “Shipme”,

“Shipm”, “Ship”, “Shi”, “Sh”, “S”

 Parent node’s SP stores : “hipment”, “hipmen” , “hipme”, “hipm”,

“hip”, “hi”, “h”

 Bargav Jayaraman 23

Ranking Example

Bargav Jayaraman 24

Document List Encryption

Bargav Jayaraman 25

 Document list of each keyword at leaf node is encrypted with
a unique key revealed only by a valid trapdoor

 All valid trapdoors (sub-strings) of a keyword are encoded as
roots of a polynomial

 Solving the polynomial reveals the decryption key for the
corresponding document list

 Polynomial is padded with some random roots to thwart
statistical analysis

Security Analysis
 PASStree does not reveal the sizes of the individual keywords,

since we store all possible sub-strings of a keyword and we
randomize the Bloom filters

 Some of the trapdoors are never searched, which means that
guessing the set of legitimate trapdoors is not possible for the
adversary, even after significant amount of searches

 Any two Bloom filters are indistinguishable from each other,
since we apply sufficient padding to each Bloom filter at the
same level and also garble the Bloom filter

 Bargav Jayaraman 26

Experimental Evaluation

Implementation Details Datasets

Bargav Jayaraman

 Language: C++

 OS: Ubuntu 12.10

 CPU: Intel Core i3-2120k

(3.3GHz)

 RAM: 4 GB

 Encryption: AES 128-bit

key

 Hashing: HMAC-SHA2

256-bit key

 WIKIPEDIA Dataset
 10 million plus web pages

 100 distinct keywords per file

 prefix and sub-string queries on dataset sizes
of 1k, 2k, …, 10k, 25k, 50k and 100k
distinct keywords

 ENRON Dataset
 0.6 million plus emails

 10 distinct keywords per file

 multi-keyword Sender-Receiver queries on
dataset sizes of 4k, 6k, 8k, 10k and 12k
distinct keywords

 Each configuration was tested 5 times using
random sampling and results were averaged

27

Experimental Evaluation

PASStree PASStree+

Bargav Jayaraman

Query Execution Time for WIKIPEDIA Dataset

28

Experimental Evaluation

PASStree PASStree+

Bargav Jayaraman

Query Execution Time for ENRON Dataset

29

Experimental Evaluation

PASStree PASStree+

Bargav Jayaraman

Ranking Precision for WIKIPEDIA Dataset

30

Experimental Evaluation

PASStree PASStree+

Bargav Jayaraman

Ranking Precision for ENRON Dataset

31

Experimental Evaluation

ENRON Dataset WIKIPEDIA Dataset

Bargav Jayaraman

Index Size compared to other similar works

32

Experimental Evaluation

ENRON Dataset WIKIPEDIA Dataset

Bargav Jayaraman

Index Construction Time

33

Summary
 First symmetric key based privacy preserving string matching

algorithm

 PASStree+ is an efficient search tree that optimizes the search
complexity

 Provides strong privacy guarantees in the IND-CKA security
model

 A ranking algorithm that is nearly as accurate as the plain-text
version

 Experiments on real-world data sets indicate the practicality and
feasibility of deployment

 Future work in this domain explores regular expression matching
and secure indexes supporting multiple types of queries

Bargav Jayaraman 34

Thank you for listening

Bargav Jayaraman 35

