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Membership Inference (Ml) Attack

Adv = TPR — FPR
I'PR

TPR +y - FPR

PPV =

#Non-members @

Training Set V=
#Members ®
Inference

Threshold

e @ —cccolececceccns

Membership Inference Ranked List of Candidates

Unlverse Of Data POlntS Adversary .................................... >
Most likely Least likely

a member a member




Threshold Selection
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New Attack: Merlin

(MEasuring Relative Loss In Neighbourhood)

Key Intuition:
Per-instance loss of members tend to increase when perturbed.
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Merlin Algorithm

Input: query record z, model . ¢ trained on data set S,
number of repeats T, standard deviation o, threshold ¢

Output: membership prediction of z (O or 1)

for 1 runs do:

C ~ N(0,6%]) // sample Gaussian noise
if C(z+ ¢, Mq) > (2, M) then:

iIncrement count

end

end

return count!/T > ¢ // ‘1’ if member
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7 EﬁectiYOeness of Yeom at different thresholds

Privacy Leakage Metrics
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" Effectiveness of Merlin at different thresholds
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New Attack: Morgan

(Measuring 10ss Relative Greater Around Neighbourhood)

Combining Yeom and Merlin thresholds leads to a stronger attack, Morgan,
that can identify the most vulnerable members with very high (~100%) confidence.
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Effect of Privacy Noise on Merlin
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Max PPV comparison on Purchase-100X data set
(Varying Privacy Loss Budget)
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What about Imbalanced Priors?

Balanced Prior Imbalanced Prior

Pr|Member| = Pr|Non Member| Pr|Member| < Pr|Non Member|

Pr|Non Member|
/= Pr[Member]
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Effect of Prior on the PPV Metric
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" Max PPV comparison on Purchase-100X data set
(Varying Prior)
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Full Paper:
https://arxiv.org/abs/2005.10881
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