
Revisiting Membership Inference 
Under Realistic Assumptions

Bargav Jayaraman†, Lingxiao Wang§, Katherine Knipmeyer†, 

Quanquan Gu§ and David Evans†

†University of Virginia

§University of California Los Angeles



D
at

a 
Se

t
M

2

Universe of Data Points

Training Set

Ranked List of Candidates

Most likely 
a member

Least likely 
a member

Membership Inference  
Adversary

Inference

Threshold

Membership Inference (MI) Attack
   

  

Adv = TPR − FPR

PPV =
TPR

TPR + γ ⋅ FPR

γ =
#Non-members

#Members
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Find threshold  that maximizes the true positive rate  

constrained to a maximum false positive rate of .
ϕ

α
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Local Minima

New Attack: Merlin 
(MEasuring Relative Loss In Neighbourhood)

Key Intuition: 
Per-instance loss of members tend to increase when perturbed.
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for  runs do:T

ζ ∼ 𝒩(0,σ2I)

if  then:ℓ(z + ζ, ℳS) > ℓ(z, ℳS)

increment count
end

end

return count/T ≥ ϕ

// sample Gaussian noise

// ‘1’ if member

Merlin Algorithm
Input: query record , model  trained on data set , 

number of repeats , standard deviation , threshold 

z ℳS S
T σ ϕ

Output: membership prediction of  (0 or 1)z
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9 New Attack: Morgan 
(Measuring lOss Relative Greater Around Neighbourhood)

Combining Yeom and Merlin thresholds leads to a stronger attack, Morgan, 

that can identify the most vulnerable members with very high (~100%) confidence.



Effect of Privacy Noise on Yeom
No Privacy GDP with ϵ = 100

Neural Network on 
Purchase-100X
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Effect of Privacy Noise on Merlin
No Privacy GDP with ϵ = 100

Neural Network on 
Purchase-100X

11

0 20 40 60 80 100
Number of Times Loss Increases (out of 100)

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

ti
on

of
In

st
an

ce
s

Members
Non Members

0 20 40 60 80 100
Number of Times Loss Increases (out of 100)

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

ti
on

of
In

st
an

ce
s

MembersNon Members



Max PPV comparison on Purchase-100X data set 
(Varying Privacy Loss Budget)
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Morgan

Merlin

Yeom

Even for a privacy loss budget of 10, 
Yeom only achieves max PPV of 0.59 
where a random guess would be 0.50.
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What about Imbalanced Priors?
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Balanced Prior Imbalanced Prior

 = Pr[Member] Pr[Non Member]  < Pr[Member] Pr[Non Member]

 Pr[Non Member]
Pr[Member]

γ =
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 Pr[Non Member]
Pr[Member]

γ =



Effect of Prior on Yeom
γ = 1 γ = 10

Neural Network on 
Purchase-100X
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Effect of Prior on Merlin
γ = 1 γ = 10

Neural Network on 
Purchase-100X
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Max PPV comparison on Purchase-100X data set  
(Varying Prior)
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Full Paper: 
https://arxiv.org/abs/2005.10881
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Code: 
https://www.github.com/bargavj/EvaluatingDPML
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