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Texas-100X dataset (https://github.com/bargavj/Texas-100X), 925K hospital records from 441 Texas hospitals

Imputation

Infer missing attributes from available data

Hospital Gender Source  Stay Length Patient Age  Ethnicity Charges ... Procedure
102 1 6 10 11 ? $34920.33 34
102 0 2 3 8 ? S4062.46 95
350 0 6 23 18 ? $105239.23 ... 62
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Traditionally, “imputation” is not considered an attack or privacy risk.



Texas-100X dataset (https://github.com/bargavj/Texas-100X), 925K hospital records from 441 Texas hospitals

Attribute Inference

Infer missing attributes from available data and model

Hospital Gender Source  Stay Length Patient Age  Ethnicity Charges ... Procedure
102 1 6 10 11 ? $34920.33 34
102 0 2 3 8 ? S4062.46 95
350 0 6 23 18 ? $105239.23 ... 62
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“Attribute inference” is considered an attack and a privacy risk.
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Exploring Different Threat Settings

Adversary Knows the Training Distribution

Yes

Prior Al Attacks

Fredrikson et al. [USENIX Sec 14]
Yeom et al. [CSF 18]
Large Mehnaz et al. [USENIX Sec 22]

Imputation

itself does well!

Adversary’s Data Set Size



Average Prediction Accuracy

Texas-100X Census19
Attribute Prediction Method Gender Ethnicity Gender Race
Naive Most Common 0.62 0.72 0.52 0.78
Imputation 0.66 0.72 0.59 0.82
Yeom et al. [CSF 2018] 0.62 0.64 0.63 0.06
Mehnaz et al. [USENIX Sec 2022] 0.59 0.60 0.63 0.06
WCAI (our improvements to Yeom) 0.68 0.74 0.64 0.83

Black-box attribute inference attacks do not meaningfully outperform imputation:

no evidence that access to model helps



Exploring Different Threat Settings

Adversary Knows the Training Distribution

Yes

Prior Al Attacks
Fredrikson et al. [USENIX Sec 14]
Yeom et al. [CSF 18]
Large Mehnaz et al. [USENIX Sec 22]

Imputation
itself does well!

Cases where Attrlbute Inference > Imputation
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Sensitive Value Inference Attack

Candidate Records

Some knowledge of a data distribution
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Positive Predictive Value (PPV)
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Positive Predictive Value (PPV)
Fraction of predicted records that are actually Hispanic
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State-of-the-art neural network
trained on 50 000 distribution records
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Number of records to predict as Hispanic (out of 10,000 candidate records)



Positive Predictive Value (PPV)

Texas-100X, infer Hispanic
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Positive Predictive Value (PPV)

Texas-100X, infer Hispanic
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Are there Attribute Inference attacks that matter?

Attribute Inference
Attack

Predictions

Imputation Method Predictions

If adversary has good prior knowledge of training distribution &,
unlikely that model improves ability to infer attributes



Models Revealing Useful Information

> Attribute Inference Predictions

Attack

Imputation Method Predictions

If adversary has limited prior knowledge of training distribution &,
model may improve ability to infer attributes



Positive Predictive Value (PPV)
Fraction of predicted records that are actually Hispanic
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Positive Predictive Value (PPV)
Fraction of predicted records that are actually Hispanic
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Input Features

Neuron Output Inference Attack

Neurons correlated with
sensitive outcome
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Some Neurons Activate Differently
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Positive Predictive Value (PPV)

Texas-100X, infer Hispanic
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Same Distribution Different Distribution
Number of Records: 5000 500 50 5000 500 50
Imputation 0.62 +0.05 0.39 +003 0.24 +t001 0.44 +0.02 0.41 +0.05 0.37 +0.05
Texas-100X
(Hispanic)
Neuron Output Attack 0.49 :0.02 0.52 +t003 0.47 +0.05 0.49 +0.02 0.52 +0.07
Imputation 0.91 +0.03 0.25+002 0.55+006 0.90+0.03 0.46 +0.04 0.42 +0.04
Census19
(Asian) Neuron Output Attack 0.85 +0.03 0.82 +0.05 0.86 +0.05 0.85+0.04 0.65 +0.12

PPV at k=100 (1%) (highlighted when model provides significant benefit)



Differential Privacy does not Mitigate
Attribute Inference Risk

Without DP With DP Training Non-Training
Imputation 0.62 +0.05 0.62 +0.05 0.62 +0.05 0.63+0.02
Neuron Attack 0.49 :0.02 0.49 +0.03 0.49 +0.03 0.48 +0.02

Results for models trained with (¢ = 1, 6 = 107°)—DP



Conclusion

Attribute Inference Attacks are doing Imputation

Privacy Risk when the Distribution is not Public
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