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Privacy Concerns 1n Machine Learning Experimental Setup: Evaluating Accuracy Loss and Privacy Leakage
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A randomized function M is e-differentially private if it produces
similar response over both neighboring data sets D and D™:
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Bargav Jayaraman and David Evans. Evaluating Differentially Private Machine Learning in Practice. Conclusion: Privacy doesn’t come for free.

In USENIX Security 2019.
Link to Code: https://github.com/bargavj/EvaluatingDPML

For a fixed privacy budget, improving composition increases model utility but at the cost of privacy leakage.




